CM cycles on Kuga-Sato varieties over Shimura curves and Selmer groups

Autor: Carlos de Vera-Piquero, Yara Elias
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Forum Mathematicum
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: Given a modular form f of even weight larger than two and an imaginary quadratic field K satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga-Sato variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes attached to f enjoying the compatibility properties of an Euler system. Then we use Kolyvagin's method, as adapted by Nekovar to higher weight modular forms, to bound the size of the relevant Selmer group associated to f and K and prove the finiteness of the (primary part) of the Shafarevich-Tate group, provided that a suitable cohomology class does not vanish.
29 pages
Databáze: OpenAIRE