Object Allocation via Swaps along a Social Network

Autor: Laurent Gourvès, Anaëlle Wilczynski, Julien Lesca
Přispěvatelé: Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Proceedings of the the 26th International Joint Conference on Artificial Intelligence (IJCAI’17)
26th International Joint Conference on Artificial Intelligence (IJCAI’17)
26th International Joint Conference on Artificial Intelligence (IJCAI’17), Aug 2017, Melbourne, Australia. pp.213-219, ⟨10.24963/ijcai.2017/31⟩
IJCAI
DOI: 10.24963/ijcai.2017/31⟩
Popis: International audience; This article deals with object allocation where each agent receives a single item. Starting from an initial endowment, the agents can be better off by exchanging their objects. However, not all trades are likely because some participants are unable to communicate. By considering that the agents are embedded in a social network, we propose to study the allocations emerging from a sequence of simple swaps between pairs of neighbors in the network. This model raises natural questions regarding (i) the reachability of a given assignment, (ii) the ability of an agent to obtain a given object, and (iii) the search of Pareto-efficient allocations. We investigate the complexity of these problems by providing, according to the structure of the social network, polynomial and NP-complete cases.
Databáze: OpenAIRE