A FREENESS CRITERION WITHOUT PATCHING FOR MODULES OVER LOCAL RINGS
Autor: | Sylvain Brochard, Srikanth B. Iyengar, Chandrashekhar B. Khare |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of the Institute of Mathematics of Jussieu. :1-13 |
ISSN: | 1475-3030 1474-7480 |
Popis: | It is proved that if $\varphi\colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated $B$-module $N$ whose flat dimension over $A$ is at most $\mathrm{edim}\, A - \mathrm{edim}\, B$, is free over $B$, and $\varphi$ is a special type of complete intersection. This result is motivated by a "patching method" developed by Taylor and Wiles, and a conjecture of de Smit, proved by the first author, dealing with the special case when $N$ is flat over $A$. Comment: 11 page; minor changes in version 2. To appear in J. Inst. Math. Jussieu |
Databáze: | OpenAIRE |
Externí odkaz: |