Comparison of the Thermodynamic Parameters Estimation for the Adsorption Process of the Metals from Liquid Phase on Activated Carbons

Autor: Sergiy Lyubchik, Svetlana B. Lyubchik, Andrey Lyubchik, Olena Lygina, Isabel Fonseca
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Thermodynamics-Interaction Studies-Solids, Liquids and Gases
Popis: Over the past decades investigation of the adsorption process on activated carbons has confirmed their great potential for industrial wastewater purification from toxic and heavy metals. This chapter is focused on the adsorption of Cr (III) in high-capacity solid adsorbents such as activated carbons. There are abundant publications on heavy metal adsorption on activated carbons with different oxygen functionalities covering wide-range conditions (solution pH, ionic strength, initial sorbate concentrations, carbon loading and etc. (Brigatti et al., 2000; Carrott et al., 1997; Li et al., 2011; Lyubchik et al., 2008; Tikhonova et al., 2008; Kolodynska, 2010; Anirudhan & Radhakrishnan, 2011). Although much has been accomplished in this area, less attention has been given to the kinetics, thermodynamics and temperature dependence of the adsorption process, which is still under continuing debates (Ramesh et al., 2007; Myers, 2004). The principal problem in interpretation of solution adsorption studies lies in the relatively low comparability of the data obtained by different research groups. These are due to the differences in the nature of the carbons, conditions of the adsorption processes and the chosen methodology of the metals adsorption analysis. Furthermore, the adsorption from the solution is much more complex than that from the gas phase. In general, the molecules attachment to the solid surface by adsorption is a broad subject (Myers, 2004). Therefore, only complex investigation of the metal ions/carbon surfaces interaction at the aqueous-solid interface can help to understand the metals adsorption mechanism, which is an important point in optimization of the conditions of their removal by activated carbons (Anirudhan & Radhakrishnan, 2008; Argun et al., 2007; Aydin & Aksoy, 2009; Ramesh et al., 2007; Liu et al., 2004). Particularly, thermodynamics has the remarkable ability to connect seemingly unrelated properties (Myers, 2004). The most important application of thermodynamics is the calculation of equilibrium between phases of the adsorption process profile. The basis for thermodynamic calculations is the adsorption isotherm, which gives the amount of the metals adsorbed in the porous structure as a function of the amount at equilibrium in the solutions. Whether the adsorption isotherm has been experimentally determined, the data points must be fitted with analytical equations for interpolation, extrapolation, and for the calculation of thermodynamic properties by numerical integration or differentiation (Myers, 2004; Ruthven, 1984).
Databáze: OpenAIRE