Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
Autor: | Jean Duchon, Laurent Carraro |
---|---|
Rok vydání: | 1998 |
Předmět: | |
Zdroj: | Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 15(4):431-458 |
ISSN: | 0294-1449 |
DOI: | 10.1016/s0294-1449(98)80030-9 |
Popis: | We study here solutions of inviscid Burgers equation with a stochastic initial value with homogeneous and independent increments without positive jumps. We define the notion of intrinsic statistical solution of this evolution equation and show that a family (X (t); t ≥ 0) of homogeneous Levy processes is an intrinsic statistical solution of Burgers equation if and only if the exponent functions ψ (t, w) satisfy the differential equation: ∂tψ = i ψ ∂w ψ. The existence of such solutions follows then from the examination of that last equation. The case of a brownian initial condition is made explicit. |
Databáze: | OpenAIRE |
Externí odkaz: |