Conformal invariance and vector operators in the $O(N)$ model

Autor: Nicolás Wschebor, Gonzalo De Polsi, Matthieu Tissier
Přispěvatelé: Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
High Energy Physics - Theory
invariance: conformal
operator: vector
Vector operator
FOS: Physical sciences
expansion: derivative
Scaling dimension
01 natural sciences
010305 fluids & plasmas
Conformal symmetry
0103 physical sciences
Ising model
correlation function
renormalization group: nonperturbative
010306 general physics
Scaling
Mathematical Physics
Condensed Matter - Statistical Mechanics
Mathematical physics
Mathematics
scaling: dimension
Statistical Mechanics (cond-mat.stat-mech)
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Statistical and Nonlinear Physics
Invariant (physics)
Scale invariance
O(N)
16. Peace & justice
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
symmetry: internal
High Energy Physics - Theory (hep-th)
Homogeneous space
perturbation: vector
Zdroj: J.Statist.Phys.
J.Statist.Phys., 2019, 177, pp.1089. ⟨10.1007/s10955-019-02411-3⟩
DOI: 10.1007/s10955-019-02411-3⟩
Popis: It is widely expected that, for a large class of models, scale invariance implies conformal invariance. A sufficient condition for this to happen is that there exists no integrated vector operator, invariant under all internal symmetries of the model, with scaling dimension $-1$. In this article, we compute the scaling dimensions of vector operators with lowest dimensions in the $O(N)$ model. We use three different approximation schemes: $\epsilon$ expansion, large $N$ limit and third order of the Derivative Expansion of Non-Perturbative Renormalization Group equations. We find that the scaling dimensions of all considered integrated vector operators are always much larger than $-1$. This strongly supports the existence of conformal invariance in this model. For the Ising model, an argument based on correlation functions inequalities was derived, which yields a lower bound for the scaling dimension of the vector perturbations. We generalize this proof to the case of the $O(N)$ model with $N\in \left\lbrace 2,3,4 \right\rbrace$.
Comment: 43 pages, 7 figures. This version includes some of the material previously included in arXiv:1804.08374
Databáze: OpenAIRE