Approche computationnelle à la représentativité de genre dans les films grand public

Autor: Antoine Mazières, Camille Roth, Telmo Menezes
Přispěvatelé: Centre Marc Bloch (CMB), Ministère de l'Europe et des Affaires étrangères (MEAE)-Bundesministerium für Bildung und Forschung-Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)-Centre National de la Recherche Scientifique (CNRS), Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
FOS: Computer and information sciences
content analysis
Social Sciences
Context (language use)
02 engineering and technology
Representativeness heuristic
Statistics - Applications
050105 experimental psychology
film theory
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
gender studies
Computer Science - Computers and Society
5. Gender equality
image analysis
020204 information systems
Computers and Society (cs.CY)
AZ20-999
0202 electrical engineering
electronic engineering
information engineering

Applications (stat.AP)
0501 psychology and cognitive sciences
Empirical evidence
Set (psychology)
General Psychology
Mass media
[SHS.SOCIO]Humanities and Social Sciences/Sociology
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
business.industry
General Arts and Humanities
05 social sciences
General Social Sciences
Contrast (statistics)
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
General Business
Management and Accounting

Film genre
Content analysis
History of scholarship and learning. The humanities
business
Psychology
[SHS.GENRE]Humanities and Social Sciences/Gender studies
General Economics
Econometrics and Finance

Cognitive psychology
face recognition
Zdroj: Humanities and Social Sciences Communications
Humanities and Social Sciences Communications, Nature, 2021, 8, pp.137. ⟨10.1057/s41599-021-00815-9⟩
Humanities and Social Sciences Communications, Nature, 2021, 8 (137), ⟨10.1057/s41599-021-00815-9⟩
Humanities & Social Sciences Communications, Vol 8, Iss 1, Pp 1-9 (2021)
ISSN: 2662-9992
DOI: 10.1057/s41599-021-00815-9⟩
Popis: Gender representation in mass media has long been mainly studied by qualitatively analyzing content. This article illustrates how automated computational methods may be used in this context to scale up such empirical observations and increase their resolution and significance. We specifically apply a face and gender detection algorithm on a broad set of popular movies spanning more than three decades to carry out a large-scale appraisal of the on-screen presence of women and men. Beyond the confirmation of a strong under-representation of women, we exhibit a clear temporal trend towards a fairer representativeness. We further contrast our findings with respect to movie genre, budget, and various audience-related features such as movie gross and user ratings. We lastly propose a fine description of significant asymmetries in the mise-en-sc\`ene and mise-en-cadre of characters in relation to their gender and the spatial composition of a given frame.
Comment: 13 pages, 7 figures, 1 table
Databáze: OpenAIRE