Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
Autor: | Zoe Daniel, Krystal Hemmings, John M. Brameld, Tim Parr, Peter J. Buttery |
---|---|
Rok vydání: | 2014 |
Předmět: |
Agonist
Gene isoform Male medicine.medical_specialty sheep medicine.drug_class β agonist Peroxisome proliferator-activated receptor Biology SF1-1100 chemistry.chemical_compound myosin heavy chain Lactate dehydrogenase Internal medicine Myosin medicine Animals Protein Isoforms muscle fibre type RNA Messenger Muscle Skeletal chemistry.chemical_classification Messenger RNA Myosin Heavy Chains Skeletal muscle Metabolism Adrenergic beta-Agonists Animal culture Endocrinology medicine.anatomical_structure chemistry Ethanolamines Growth Hormone Animal Science and Zoology Physiology and Functional Biology of Systems Research Article |
Zdroj: | Animal Animal, Vol 9, Iss 2, Pp 285-294 (2015) |
ISSN: | 1751-732X |
Popis: | Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and %MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment. |
Databáze: | OpenAIRE |
Externí odkaz: |