Bioenergy in energy transformation and climate management
Autor: | Rose, S.K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D.P., Weyant, J., Environmental Sciences |
---|---|
Přispěvatelé: | centre international de recherche sur l'environnement et le développement (CIRED), Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École des hautes études en sciences sociales (EHESS)-AgroParisTech-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Environmental Sciences |
Rok vydání: | 2013 |
Předmět: |
Atmospheric Science
Global and Planetary Change Primary energy Natural resource economics business.industry Fossil fuel Climate change Biomass Bio-energy with carbon capture and storage 7. Clean energy 12. Responsible consumption Climate change mitigation Agronomy 13. Climate action Bioenergy Biofuel Taverne [SDE]Environmental Sciences 11. Sustainability Environmental science business |
Zdroj: | Climatic Change Climatic Change, Springer Verlag, 2013, pp.1-17. ⟨10.1007/s10584-013-0965-3⟩ Climatic Change, 123(3-4), 477. Springer Netherlands |
ISSN: | 1573-1480 0165-0009 |
DOI: | 10.1007/s10584-013-0965-3 |
Popis: | International audience; This study explores the importance of bioenergy to potential future energy transformation and climate change management. Using a large inter-model comparison of 15 models, we comprehensively characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives. Model scenarios project, by 2050, bioenergy growth of 1 to 10 % per annum reaching 1 to 35 % of global primary energy, and by 2100, bioenergy becoming 10 to 50 % of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 % of regional electricity from biopower by 2050, and up to 70 % of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation and macroeconomic costs of climate policies. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels, but with potential implications for climate outcomes. Finally, we find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. The results suggest opportunities, but also imply challenges. Overall, further evaluation of the viability of large-scale global bioenergy is merited. © 2013 Springer Science+Business Media Dordrecht. |
Databáze: | OpenAIRE |
Externí odkaz: |