Volumes, middle-dimensional systoles, and Whitehead products
Autor: | Mikhail G. Katz, Ivan Babenko, Alexander I. Suciu |
---|---|
Rok vydání: | 1998 |
Předmět: |
Mathematics - Differential Geometry
Closed manifold General Mathematics Mathematical analysis 53C23 (Primary) 55Q15 (Secondary) Unit volume Homology (mathematics) Submanifold Combinatorics Differential Geometry (math.DG) FOS: Mathematics Algebraic Topology (math.AT) Mathematics - Algebraic Topology Mathematics::Symplectic Geometry Mathematics |
Zdroj: | Mathematical Research Letters. 5:461-471 |
ISSN: | 1945-001X 1073-2780 |
DOI: | 10.4310/mrl.1998.v5.n4.a4 |
Popis: | Let X be a closed manifold of dimension 2m >= 6 with torsion-free middle-dimensional homology. We construct metrics on X of arbitrarily small volume, such that every middle-dimensional submanifold of less than unit volume necessarily bounds. Thus, Loewner's theorem has no higher-dimensional analogue. LaTeX2e, 11 pages. Revised version, to appear in Math. Research Letters |
Databáze: | OpenAIRE |
Externí odkaz: |