Short-term effects of pesticide fipronil on behavioral and physiological endpoints of Daphnia magna
Autor: | Adam Bownik, Aleksandra Szabelak |
---|---|
Rok vydání: | 2021 |
Předmět: |
Insecticides
Claw Health Toxicology and Mutagenesis Daphnia magna Crustacean 010501 environmental sciences 01 natural sciences 03 medical and health sciences chemistry.chemical_compound Animal science Heart rate Environmental Chemistry Ecotoxicology Fipronil 030304 developmental biology 0105 earth and related environmental sciences Behavior 0303 health sciences biology Motility Aquatic animal General Medicine Pesticide biology.organism_classification Pollution chemistry Physiological activity Research Article |
Zdroj: | Environmental Science and Pollution Research International |
ISSN: | 1614-7499 0944-1344 |
DOI: | 10.1007/s11356-021-13091-6 |
Popis: | Fipronil (FIP) is an organic pesticide with many practical uses. Although some results indicated toxic effects in some terrestrial and aquatic animal species, little is known on its influence on behavioral and physiological endpoints of cladocerans. The aim of our study was to determine the short-term effects of FIP at concentrations of 0.1 μg/L, 1 μg/L, 10 μg/L, and 100 μg/L on Daphnia magna sublethal indices: behavioral (swimming speed, distance traveled) and physiological endpoints (heart rate, post-abdominal claw activity and thoracic limb movements). The results showed that FIP induced reduction of swimming speed and distance traveled in a concentration- and time-dependent manner at all the concentrations used. The lowest concentration of the insecticide temporarily stimulated post-abdominal claw activity after 24 h and thoracic limb activity after 48 h; however, the highest concentrations reduced all the studied physiological endpoints. IC50 values showed that thoracic limb activity, swimming speed, and distance traveled were most sensitive to FIP after 24-h exposure. The most sensitive parameter after 48 h and 72 h was swimming speed and post-abdominal claw activity, respectively. The study indicated that (i) behavioral and physiological endpoints of Daphnia magna are reliable and valuable sublethal indicators of toxic alterations induced by FIP; however, they respond with different sensitivity at various times of exposure, (ii) FIP may alter cladoceran behavior and physiological processes at concentrations detected in the aquatic environment; therefore, it should be considered as an ecotoxicological hazard to freshwater cladocerans. |
Databáze: | OpenAIRE |
Externí odkaz: |