Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network

Autor: Johannes Haubold, Axel Wetter, Alexander Radbruch, Michael Forsting, Sven Koitka, Felix Nensa, Patrizia Haubold, Lale Umutlu, René Hosch
Rok vydání: 2020
Předmět:
medicine.medical_specialty
Image quality
media_common.quotation_subject
Medizin
Computed tomography
02 engineering and technology
Signal-To-Noise Ratio
030218 nuclear medicine & medical imaging
Reduction (complexity)
03 medical and health sciences
0302 clinical medicine
Deep Learning
Similarity (network science)
Consistency (statistics)
Image processing
computer-assisted

0202 electrical engineering
electronic engineering
information engineering

medicine
Contrast (vision)
Animals
Humans
Radiology
Nuclear Medicine and imaging

media_common
medicine.diagnostic_test
Drug Tapering
business.industry
Deep learning
Contrast media
Pattern recognition
General Medicine
Tomography
spiral computed

Imaging Informatics and Artificial Intelligence
020201 artificial intelligence & image processing
Dose reduction
Radiology
Artificial intelligence
business
Tomography
X-Ray Computed
Zdroj: European Radiology
ISSN: 1432-1084
Popis: Objectives To reduce the dose of intravenous iodine-based contrast media (ICM) in CT through virtual contrast-enhanced images using generative adversarial networks. Methods Dual-energy CTs in the arterial phase of 85 patients were randomly split into an 80/20 train/test collective. Four different generative adversarial networks (GANs) based on image pairs, which comprised one image with virtually reduced ICM and the original full ICM CT slice, were trained, testing two input formats (2D and 2.5D) and two reduced ICM dose levels (−50% and −80%). The amount of intravenous ICM was reduced by creating virtual non-contrast series using dual-energy and adding the corresponding percentage of the iodine map. The evaluation was based on different scores (L1 loss, SSIM, PSNR, FID), which evaluate the image quality and similarity. Additionally, a visual Turing test (VTT) with three radiologists was used to assess the similarity and pathological consistency. Results The −80% models reach an SSIM of > 98%, PSNR of > 48, L1 of between 7.5 and 8, and an FID of between 1.6 and 1.7. In comparison, the −50% models reach a SSIM of > 99%, PSNR of > 51, L1 of between 6.0 and 6.1, and an FID between 0.8 and 0.95. For the crucial question of pathological consistency, only the 50% ICM reduction networks achieved 100% consistency, which is required for clinical use. Conclusions The required amount of ICM for CT can be reduced by 50% while maintaining image quality and diagnostic accuracy using GANs. Further phantom studies and animal experiments are required to confirm these initial results. Key Points • The amount of contrast media required for CT can be reduced by 50% using generative adversarial networks. • Not only the image quality but especially the pathological consistency must be evaluated to assess safety. • A too pronounced contrast media reduction could influence the pathological consistency in our collective at 80%.
Databáze: OpenAIRE