Electronic health records for the diagnosis of rare diseases
Autor: | Antoine Neuraz, Rémi Salomon, Anita Burgun, Nicolas Garcelon |
---|---|
Přispěvatelé: | Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Service d'informatique médicale et biostatistiques [CHU Necker], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de néphrologie pédiatrique [CHU Necker], CCSD, Accord Elsevier, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Université Paris Cité - UFR Médecine [Santé] (UPCité UFR Médecine), Université Paris Cité (UPCité), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité) |
Rok vydání: | 2020 |
Předmět: |
MESH: Rare Diseases
0301 basic medicine Decision support system [INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] Computer science media_common.quotation_subject 030232 urology & nephrology MESH: Algorithms Translational research Reuse Health records Health informatics Adaptability Machine Learning MESH: Natural Language Processing 03 medical and health sciences 0302 clinical medicine pediatric nephrology Electronic Health Records Humans MESH: Electronic Health Records Repurposing Natural Language Processing media_common education MESH: Humans MESH: Machine Learning business.industry rare diseases electronic health record [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] artificial intelligence Data science Data warehouse 3. Good health 030104 developmental biology [SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie Nephrology [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie business Algorithms |
Zdroj: | Kidney International Kidney International, Nature Publishing Group, 2020, 97 (4), pp.676-686. ⟨10.1016/j.kint.2019.11.037⟩ |
ISSN: | 0085-2538 1523-1755 |
Popis: | International audience; With the emergence of electronic health records, the reuse of clinical data offers new perspectives for the diagnosis and management of patients with rare diseases. However, there are many obstacles to the repurposing of clinical data. The development of decision support systems depends on the ability to recruit patients, extract and integrate the patients' data, mine and stratify these data, and integrate the decision support algorithm into patient care. This last step requires an adaptability of the electronic health records to integrate learning health system tools. In this literature review, we examine the research that provides solutions to unlock these barriers and accelerate translational research: structured electronic health records and free-text search engines to find patients, data warehouses and natural language processing to extract phenotypes, machine learning algorithms to classify patients, and similarity metrics to diagnose patients. Medical informatics is experiencing an impellent request to develop decision support systems, and this requires ethical considerations for clinicians and patients to ensure appropriate use of health data. |
Databáze: | OpenAIRE |
Externí odkaz: |