The improved relative entropy for face recognition
Autor: | Yan Wang, Ji Yan Zhang, Qi Rong Zhang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Kullback–Leibler divergence
Relative entropy business.industry Computer science Speech recognition 0211 other engineering and technologies Pattern recognition 02 engineering and technology Facial recognition system Improved relative entropy Noise 020303 mechanical engineering & transports 0203 mechanical engineering lcsh:TA1-2040 Face (geometry) 021105 building & construction Artificial intelligence Face recognition business lcsh:Engineering (General). Civil engineering (General) |
Zdroj: | MATEC Web of Conferences, Vol 63, p 04006 (2016) |
Popis: | The relative entropy is least sensitive to noise. In this paper, we propose the improved relative entropy for face recognition (IRE). The IRE method of recognition rate is far higher than the LDA, LPP method, by experimental results on CMU PIE face database and YALE B face database. |
Databáze: | OpenAIRE |
Externí odkaz: |