Selective Isotope CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method

Autor: Gabriel Turturica, Heishun Zen, C. A. Ur, Yoshitaka Taira, Takehito Hayakawa, Violeta Iancu, Masaki Fujimoto, Hiroyuki Toyokawa, Masahiro Katoh, Toshiteru Kii, Khaled Ali, Hideaki Ohgaki, Toshiyuki Shizuma
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IEEE Transactions on Nuclear Science. 67(8):1976-1984
ISSN: 0018-9499
Popis: The isotope selectivity of computed tomography (CT) imaging based on nuclear resonance fluorescence (NRF) transmission method using a quasi-monochromatic laser Compton scattering (LCS) gamma-ray beam in the MeV region was demonstrated at the Ultra Violet Synchrotron Orbital Radiation–III (UVSOR-III) Synchrotron Radiation Facility (Institute of Molecular Science, National Institute of Natural Science) for two enriched lead isotope rods (206Pb and 208Pb) implanted in an aluminum cylinder. Since these two rods show the same gamma-ray attenuation in atomic processes, it is impossible to differentiate between them using a standard Gamma-CT technique based on atomic attenuation of gamma rays. The LCS gamma-ray beam had a maximum energy of 5.528 MeV and an intensity of approximately 5.5 photons/s/eV at the resonance energy ( $J^{\pi } = 1^{-}$ at 5.512 MeV in 208Pb). A lead collimator with a hole diameter of 1 mm was used to define the size of the LCS gamma-ray beam at the CT target. The CT image of the 208Pb rod was selectively obtained with a 2-mm pixel size resolution, which was determined by the horizontal step size of the CT stage.
Databáze: OpenAIRE