Clinical analysis of the 'small plateau' sign on the flow-volume curve followed by deep learning automated recognition

Autor: Jinping Zheng, Jianling Liang, Lijuan Liang, Ruibo Huang, Yimin Wang, Wenya Chen, Yi Gao, Yicong Li, Changzheng Zhang
Rok vydání: 2021
Předmět:
Zdroj: BMC Pulmonary Medicine
BMC Pulmonary Medicine, Vol 21, Iss 1, Pp 1-16 (2021)
ISSN: 1471-2466
DOI: 10.1186/s12890-021-01733-x
Popis: Background Small plateau (SP) on the flow-volume curve was found in parts of patients with suspected asthma or upper airway abnormalities, but it lacks clear scientific proof. Therefore, we aimed to characterize its clinical features. Methods We involved patients by reviewing the bronchoprovocation test (BPT) and bronchodilator test (BDT) completed between October 2017 and October 2020 to assess the characteristics of the sign. Patients who underwent laryngoscopy were assigned to perform spirometry to analyze the relationship of the sign and upper airway abnormalities. SP-Network was developed to recognition of the sign using flow-volume curves. Results Of 13,661 BPTs and 8,168 BDTs completed, we labeled 2,123 (15.5%) and 219 (2.7%) patients with the sign, respectively. Among them, there were 1,782 (83.9%) with the negative-BPT and 194 (88.6%) with the negative-BDT. Patients with SP sign had higher median FVC and FEV1% predicted (both P P = 0.038). SP-Network achieved an accuracy of 95.2% in the task of automatic recognition of the sign. Conclusions SP sign is featured on the flow-volume curve and recognized by the SP-Network model. Patients with the sign are less likely to have airway hyperresponsiveness, automatic visualizing of this sign is helpful for primary care centers where BPT cannot available.
Databáze: OpenAIRE