Popis: |
1. Two methods are described for deriving the steady-state velocity of an enzyme reaction from a consideration of fluxes between enzyme intermediates. The equivalent-reaction technique, in which enzyme intermediates are systematically eliminated and replaced by equivalent reactions, appears the most generally useful. The methods are applicable to all enzyme mechanisms, including three-substrate and random Bi Bi Ping Pong mechanisms. Solutions are obtained in algebraic form and these are presented for the common random Bi Bi mechanisms. The steady-state quantities of the enzyme intermediates may also be calculated. Additional steps may be introduced into enzyme mechanisms for which the steady-state velocity equation is already known. 2. The calculation of fluxes between substrates and products in three-substrate and random Bi Bi Ping Pong mechanisms is described. 3. It is concluded that the new methods may offer advantages in ease of calculation and in the analysis of the effects of individual steps on the overall reaction. The methods are used to show that an ordered addition of two substrates to an enzyme which is activated by another ligand will not necessarily give hyperbolic steady-state-velocity kinetics or the flux ratios characteristic of an ordered addition, if the dissociation of the ligand from the enzyme is random. |