Fourier Approximation for Integral Equations on the Real Line
Autor: | S. M. Hashemiparast, Hasan Fallahgoul |
---|---|
Rok vydání: | 2009 |
Předmět: |
Article Subject
lcsh:Mathematics General Mathematics Mathematical analysis Partition of an interval General Engineering Line integral Riemann integral Singular integral lcsh:QA1-939 Integral equation Fourier integral operator Volume integral symbols.namesake lcsh:TA1-2040 Improper integral symbols lcsh:Engineering (General). Civil engineering (General) Mathematics |
Zdroj: | Mathematical Problems in Engineering, Vol 2009 (2009) |
ISSN: | 1563-5147 1024-123X |
DOI: | 10.1155/2009/786368 |
Popis: | Based on Guass quadradure method a class of integral equations having unknown periodic solution on the real line is investigated, by using Fourier series expansion for the solution of the integral equation and applying a process for changing the interval to the finite interval (; 1), the Chebychev weights become appropriate and examples indicate the high accuracy and very good approximation to the solution of the integral. |
Databáze: | OpenAIRE |
Externí odkaz: |