Random Access Performance of Distributed Sensors Attacked by Unknown Jammers
Autor: | Jung-Hwa Wui, Dongwoo Kim, Dae-Kyo Jeong |
---|---|
Rok vydání: | 2017 |
Předmět: |
Engineering
Denial-of-service attack Jamming Throughput 02 engineering and technology lcsh:Chemical technology Computer security computer.software_genre Interference (wave propagation) 01 natural sciences Biochemistry Article Analytical Chemistry code jamming 0202 electrical engineering electronic engineering information engineering Code (cryptography) lcsh:TP1-1185 Electrical and Electronic Engineering random access channel (RACH) wireless sensor networks Instrumentation business.industry 010401 analytical chemistry ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS 020206 networking & telecommunications power jamming Atomic and Molecular Physics and Optics 0104 chemical sciences Transmission (telecommunications) business Wireless sensor network computer Random access Computer network |
Zdroj: | Sensors (Basel, Switzerland) Sensors; Volume 17; Issue 11; Pages: 2667 Sensors, Vol 17, Iss 11, p 2667 (2017) |
ISSN: | 1424-8220 |
Popis: | In this paper, we model and investigate the random access (RA) performance of sensor nodes (SN) in a wireless sensor network (WSN). In the WSN, a central head sensor (HS) collects the information from distributed SNs, and jammers disturb the information transmission primarily by generating interference. In this paper, two jamming attacks are considered: power and code jamming. Power jammers (if they are friendly jammers) generate noises and, as a result, degrade the quality of the signal from SNs. Power jamming is equally harmful to all the SNs that are accessing HS and simply induces denial of service (DoS) without any need to hack HS or SNs. On the other hand, code jammers mimic legitimate SNs by sending fake signals and thus need to know certain system parameters that are used by the legitimate SNs. As a result of code jamming, HS falsely allocates radio resources to SNs. The code jamming hence increases the failure probability in sending the information messages, as well as misleads the usage of radio resources. In this paper, we present the probabilities of successful preamble transmission with power ramping according to the jammer types and provide the resulting throughput and delay of information transmission by SNs, respectively. The effect of two jamming attacks on the RA performances is compared with numerical investigation. The results show that, compared to RA without jammers, power and code jamming degrade the throughput by up to 30.3% and 40.5%, respectively, while the delay performance by up to 40.1% and 65.6%, respectively. |
Databáze: | OpenAIRE |
Externí odkaz: |