Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

Autor: Kazuaki Sakoda, Takaaki Mano, G. Sallen, Olivier Krebs, Thierry Amand, S. Kunz, Bernhard Urbaszek, Daniel Paget, L. Bouet, Xavier Marie, Takashi Kuroda
Přispěvatelé: Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), National Institute for Materials Science (NIMS), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2014
Předmět:
Nuclear Theory
FOS: Physical sciences
General Physics and Astronomy
7. Clean energy
Article
General Biochemistry
Genetics and Molecular Biology

Gallium arsenide
Condensed Matter::Materials Science
chemistry.chemical_compound
Magnetization
Optical physics
Nuclear magnetic resonance
Semiconductor quantum dots
Magnetic properties and materials
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Nuclear Experiment
Physics
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
Multidisciplinary
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed matter physics
Quantum dots
General Chemistry
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
Polarization (waves)
Magnetic field
Applied physics
chemistry
Optical control
Quantum dot
Quadrupole
Condensed Matter::Strongly Correlated Electrons
Zdroj: Nature Communications
Nature Communications, Nature Publishing Group, 2014, 5 (1)
Nature Communications, 2014, 5 (1)
ISSN: 2041-1723
DOI: 10.1038/ncomms4268
Popis: Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.
Optical control of nuclear spin polarization in semiconductor quantum dots is promising for applications in NMR imaging. Sallen et al. report efficient dynamic nuclear polarization at zero magnetic field in strain-free gallium arsenide quantum dots with Knight fields dominating the nuclear quadrupole effects.
Databáze: OpenAIRE