Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures

Autor: Benjamin Pigeau, Benjamin Besga, Antoine Reigue, Wolfgang Wernsdorfer, Eric Eyraud, Laure Mercier de Lépinay, O. Arcizet, Philip Heringlake, Clement Gouriou, Francesco Fogliano
Přispěvatelé: Nano-Optique et Forces (NOF), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Ingénierie Expérimentale (ExpE), Circuits électroniques quantiques Alpes (QuantECA)
Rok vydání: 2021
Předmět:
Photon
Materials science
Physics::Instrumentation and Detectors
Science
Nanowire
Physics::Optics
General Physics and Astronomy
02 engineering and technology
01 natural sciences
Article
General Biochemistry
Genetics and Molecular Biology

Condensed Matter::Materials Science
chemistry.chemical_compound
Nanosensor
0103 physical sciences
Silicon carbide
nano-optomechanics
Dilution refrigerator
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
010306 general physics
Nanophotonics and plasmonics
Multidisciplinary
business.industry
Oscillation
Astrophysics::Instrumentation and Methods for Astrophysics
General Chemistry
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
021001 nanoscience & nanotechnology
Thermal conduction
Photon counting
Nanosensors
chemistry
Optoelectronics
dilution refrigerator
force sensors
0210 nano-technology
business
Zdroj: Nature Communications
Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
Nature Communications, Nature Publishing Group, 2021, 12, pp.4124. ⟨10.1038/s41467-021-24318-y⟩
ISSN: 2041-1723
Popis: Cooling down nanomechanical force probes is a generic strategy to enhance their sensitivities through the concomitant reduction of their thermal noise and mechanical damping rates. However, heat conduction becomes less efficient at low temperatures, which renders difficult to ensure and verify their proper thermalization. Here we implement optomechanical readout techniques operating in the photon counting regime to probe the dynamics of suspended silicon carbide nanowires in a dilution refrigerator. Readout of their vibrations is realized with sub-picowatt optical powers, in a situation where less than one photon is collected per oscillation period. We demonstrate their thermalization down to 32 ± 2 mK, reaching very large sensitivities for scanning probe force sensors, 40 zN Hz−1/2, with a sensitivity to lateral force field gradients in the fN m−1 range. This opens the road toward explorations of the mechanical and thermal conduction properties of nanoresonators at minimal excitation level, and to nanomechanical vectorial imaging of faint forces at dilution temperatures.
Optical readout techniques for nanomechanical force probes usually generate more heat than what can be dissipated through the nanoresonators. Here, the authors use an interferometric readout scheme, achieving large force sensitivity using suspended silicon carbide nanowires at dilution temperatures.
Databáze: OpenAIRE