Cloning and Characterization of Rat Spermatid Protein SSP411: A Thioredoxin-Like Protein

Autor: Hui-Juan Shi, Ai Zhen Wu, Yong-Mei Chen, Michelle D. Santos, Zong-Ming Feng, Li-Li Huang, Kai Zhu, Ching-Ling C. Chen
Rok vydání: 2004
Předmět:
Zdroj: Journal of Andrology. 25:479-493
ISSN: 0196-3635
DOI: 10.1002/j.1939-4640.2004.tb02819.x
Popis: In an attempt to identify new sperm-specific genes that are involved in sperm maturation, fertilization, and embryo development, such as the mammalian ortholog of the sperm-supplied protein gene, spe-11, in Caenorhabditis elegans, we cloned and characterized a new spermatid-specific protein gene, ssp411, from adult rat testes. The ssp411 cDNA shared >85% sequence identity with an unnamed human protein, FLJ21347, and an uncharacterized mouse testicular protein called transcript increased in spermiogenesis 78 (TISP78). A 2.8-kb ssp411 mRNA was expressed in a testis-specific and age-dependent manner; the mRNA was evident at 28 days and remained at high levels throughout adulthood. An SSP411 protein of molecular weight 88 000 was detected in testicular extracts by Western blot analysis. Ssp411 mRNA and SSP411 protein, as analyzed by in situ hybridization and immunohistochemistry, were both expressed in a stage-dependent fashion during the cycle of the seminiferous epithelium. The ssp411 mRNA was predominantly localized to round and elongated spermatids, with maximal expression at stages VII-XII. The SSP411 protein was mainly observed in elongated spermatids and reached its highest levels during stages V-VI. A conserved thioredoxin-like domain was detected in the N-terminal region of SSP411 and its orthologs. An analysis of the predicted 3-dimensional structural modeling and folding pattern further suggested that SSP411 is identifiable as a member of thioredoxin family. In summary, we have identified a new rat spermatid protein gene, ssp411, and its orthologs in human and mouse and demonstrated that SSP411 might belong to a testis-specific thioredoxin family. This suggests that SSP411 may play a role in sperm maturation, fertilization, and/or embryo development, as has been shown in thioredoxin family.
Databáze: OpenAIRE