Relation collection for the Function Field Sieve
Autor: | Pierrick Gaudry, Jérémie Detrey, Marion Videau |
---|---|
Přispěvatelé: | Cryptology, Arithmetic: Hardware and Software (CARAMEL), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Alberto Nannarelli and Peter-Michael Seidel and Ping Tak Peter Tang, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Discrete mathematics
Polynomial arithmetic Factorization of polynomials over finite fields 020206 networking & telecommunications 02 engineering and technology Function (mathematics) Prime (order theory) Algebra [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] Finite field Discrete logarithm 0202 electrical engineering electronic engineering information engineering Function field sieve 020201 artificial intelligence & image processing Finite field arithmetic Mathematics |
Zdroj: | ARITH 21-21st IEEE International Symposium on Computer Arithmetic ARITH 21-21st IEEE International Symposium on Computer Arithmetic, Apr 2013, Austin, Texas, United States. pp.201-210, ⟨10.1109/ARITH.2013.28⟩ IEEE Symposium on Computer Arithmetic |
DOI: | 10.1109/ARITH.2013.28⟩ |
Popis: | International audience; In this paper, we focus on the relation collection step of the Function Field Sieve (FFS), which is to date the best known algorithm for computing discrete logarithms in small-characteristic finite fields of cryptographic sizes. Denoting such a finite field by GF(p^n), where p is much smaller than n, the main idea behind this step is to find polynomials of the form a(t)-b(t)x in GF(p)[t][x] which, when considered as principal ideals in carefully selected function fields, can be factored into products of low-degree prime ideals. Such polynomials are called ''relations'', and current record-sized discrete-logarithm computations require billions of them. Collecting relations is therefore a crucial and extremely expensive step in FFS, and a practical implementation thereof requires heavy use of cache-aware sieving algorithms, along with efficient polynomial arithmetic over GF(p)[t]. This paper presents the algorithmic and arithmetic techniques which were put together as part of a new implementation of FFS, aimed at medium- to record-sized computations, and planned for public release in the near future. |
Databáze: | OpenAIRE |
Externí odkaz: |