Engineering of biofilms with a glycosylation circuit for biomaterial applications

Autor: Ebru Şahin Kehribar, Musa Efe Isilak, Jozef Adamcik, Raffaele Mezzenga, Urartu Ozgur Safak Seker, Eray Ulas Bozkurt
Přispěvatelé: Şeker, Urartu Özgür Şafak
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Biomaterials Science
Popis: Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins. Engineering protein-based biomaterials genetically enables desired functions and characteristics. Additionally, utilization of glycosylation for biomaterial engineering can expand possibilities by including saccharides to the inventory of building blocks. Here, de novo glycosylation of Bacillus subtilis amyloid-like biofilm protein TasA using a Campylobacter jejuni glycosylation circuit is proposed to be a novel biomaterial engineering method for increasing adhesiveness of TasA fibrils. A C. jejuni glycosylation motif is genetically incorporated to tasA gene and expressed in Escherichia coli containing the C. jejuni pgl protein glycosylation pathway. Glycosylated TasA fibrils indicate enhanced adsorption on the gold surface without disruption of fibril formation. Our findings suggest that N-linked glycosylation can be a promising tool for engineering protein-based biomaterials specifically regarding adhesion.
Databáze: OpenAIRE