Modeling Expected Shortfall Using Tail Entropy

Autor: Miruna Mazurencu-Marinescu-Pele, Daniel Traian Pele, Emese Lazar
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Entropy
Volume 21
Issue 12
ISSN: 1099-4300
Popis: Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje