K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration

Autor: Markus Bingmer, Kareem A. Zaghloul, Julia Schiemann, Birgit Liss, Susumu Seino, Gaby Schneider, Jochen Roeper, Falk Schlaudraff, Peter J. Magill, Verena Klose
Rok vydání: 2012
Předmět:
Zdroj: Nature Neuroscience.
ISSN: 1546-1726
1097-6256
Popis: Phasic activation of the dopamine (DA) midbrain system in response to unexpected reward or novelty is critical for adaptive behavioral strategies. This activation of DA midbrain neurons occurs via a synaptically triggered switch from low-frequency background spiking to transient high-frequency burst firing. We found that, in medial DA neurons of the substantia nigra (SN), activity of ATP-sensitive potassium (K-ATP) channels enabled NMDA-mediated bursting in vitro as well as spontaneous in vivo burst firing in anesthetized mice. Cell-selective silencing of K-ATP channel activity in medial SN DA neurons revealed that their K-ATP channel-gated burst firing was crucial for novelty-dependent exploratory behavior. We also detected a transcriptional upregulation of K-ATP channel and NMDA receptor subunits, as well as high in vivo burst firing, in surviving SN DA neurons from Parkinson's disease patients, suggesting that burst-gating K-ATP channel function in DA neurons affects phenotypes in both disease and health.
Databáze: OpenAIRE