A Simple Novel Method for Determining Mortality Rates in HIV Treatment Programs Worldwide

Autor: Gregory P. Bisson
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: PLoS Medicine, Vol 8, Iss 1, p e1000392 (2011)
PLoS Medicine
ISSN: 1549-1676
1549-1277
Popis: Matthias Egger and colleagues present a nomogram and a web-based calculator to correct estimates of program-level mortality for loss to follow-up, for use in antiretroviral treatment programs.
Background The World Health Organization estimates that in sub-Saharan Africa about 4 million HIV-infected patients had started antiretroviral therapy (ART) by the end of 2008. Loss of patients to follow-up and care is an important problem for treatment programmes in this region. As mortality is high in these patients compared to patients remaining in care, ART programmes with high rates of loss to follow-up may substantially underestimate mortality of all patients starting ART. Methods and Findings We developed a nomogram to correct mortality estimates for loss to follow-up, based on the fact that mortality of all patients starting ART in a treatment programme is a weighted average of mortality among patients lost to follow-up and patients remaining in care. The nomogram gives a correction factor based on the percentage of patients lost to follow-up at a given point in time, and the estimated ratio of mortality between patients lost and not lost to follow-up. The mortality observed among patients retained in care is then multiplied by the correction factor to obtain an estimate of programme-level mortality that takes all deaths into account. A web calculator directly calculates the corrected, programme-level mortality with 95% confidence intervals (CIs). We applied the method to 11 ART programmes in sub-Saharan Africa. Patients retained in care had a mortality at 1 year of 1.4% to 12.0%; loss to follow-up ranged from 2.8% to 28.7%; and the correction factor from 1.2 to 8.0. The absolute difference between uncorrected and corrected mortality at 1 year ranged from 1.6% to 9.8%, and was above 5% in four programmes. The largest difference in mortality was in a programme with 28.7% of patients lost to follow-up at 1 year. Conclusions The amount of bias in mortality estimates can be large in ART programmes with substantial loss to follow-up. Programmes should routinely report mortality among patients retained in care and the proportion of patients lost. A simple nomogram can then be used to estimate mortality among all patients who started ART, for a range of plausible mortality rates among patients lost to follow-up. Please see later in the article for the Editors' Summary
Editors' Summary Background AIDS has killed more than 25 million people since 1981 and about 33 million people (30 million of them in low- and middle-income countries) are now infected with HIV, which causes AIDS. HIV destroys immune system cells, leaving infected individuals susceptible to other infections. Early in the AIDS epidemic, most HIV-infected people died within 10 years of infection. Then, in 1996, highly active antiretroviral therapy (ART) became available. For people living in affluent, developed countries, HIV/AIDS became a chronic condition, but for people living in low- and middle-income countries, ART was prohibitively expensive and HIV/AIDS remained a fatal illness. In 2003, this situation was declared a global health emergency and governments, international agencies, and funding bodies began to implement plans to increase ART coverage in developing countries. By the end of 2009, 5.25 million of the 14.6 million people in low- and middle-income countries who needed ART (36%) were receiving it. Why Was This Study Done? ART program managers in developing countries need to monitor the effectiveness of their programs to ensure that their limited resources are used wisely. In particular, they need accurate records of the death (mortality) rates in their programs. However, in resource-limited countries, many patients drop out of ART programs. In sub-Saharan Africa, for example, only about 60% of patients are retained in ART programs 2 years after starting therapy. In many programs, it is not known how many of the patients lost to follow-up subsequently die, but it is known that mortality is higher among these patients than among those who remain in care. Thus, in programs with high dropout rates and poor ascertainment of death in patients lost to follow-up, estimates of the mortality of all patients starting ART are underestimates. In this study, the researchers develop a simple nomogram (a graphical method for finding the value of a third variable from the values of two other variables) to correct estimates of program-level mortality for loss to follow-up. What Did the Researchers Do and Find? The researchers' nomogram uses the percentage of patients lost to follow and the estimated ratio of mortality between patients lost and not lost to follow-up to provide a correction factor that converts mortality among patients remaining in care to mortality among all the patients in a program. The researchers first applied their nomogram to the Academic Model Providing Access to Healthcare (AMPATH), a large ART program in Kenya. They used data collected by outreach teams to estimate mortality among the 40.5% of patients lost to follow-up at two AMPATH sites between 1 January 2005 and 31 January 2007. The uncorrected estimate of mortality over this period was 2.8%, whereas the corrected estimate obtained using the nomogram was 9.4%. The researchers then applied their nomogram to 11 other African ART programs. This time, the researchers used a statistical model to provide estimates of mortality among patients lost to follow-up. Mortality among patients retained in care was 1.4% to 12.0% at 1 year; loss to follow-up ranged from 2.8% to 28.7%. The nomogram provided a correction value for mortality among all patients in the ART program of 1.2 to 8.0, which resulted in absolute differences between uncorrected and corrected mortality of 1.6% to 9.8%. The largest absolute difference was in the program with the largest percentage of patients lost to follow-up. What Do These Findings Mean? These findings indicate that, in ART programs where a large percentage of patients are lost to follow-up, program-level mortality estimates based on the mortality among patients retained in the program can be substantial underestimates. This bias needs to be taken into account when comparing the effectiveness of different programs, so the researchers recommend that all programs routinely report mortality among patients retained in care and the proportion of patients lost to follow-up. The nomogram developed by the researchers can then be used to estimate mortality among all patients who started ART using a range of plausible mortality rates among patients lost to follow-up. To help program managers make use of the nomogram, the researchers provide a user-friendly web calculator based on the nomogram on the International epidemiologic Databases to Evaluate AIDS (IeDEA) Southern Africa website. Additional Information Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000390. This study is further discussed in a PLoS Medicine Perspective by Gregory Bisson Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS HIV InSite has comprehensive information on all aspects of HIV/AIDS Information is available from Avert, an international AIDS charity on many aspects of HIV/AIDS, including information on the HIV and AIDS in Africa, and on universal access to AIDS treatment (in English and Spanish) The World Health Organization provides information about universal access to AIDS treatment, including the 2010 progress report (in English, French and Spanish) The International epidemiologic Databases to Evaluate Aids (IeDEA) Southern Africa website provides access to a calculator for correcting overall program-specific mortality for loss to follow-up
Databáze: OpenAIRE