Leibniz-Yang-Mills Gauge Theories and the 2-Higgs Mechanism

Autor: Thomas Strobl
Přispěvatelé: Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
High Energy Physics - Theory
Leibniz algebra
split
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
Yang–Mills existence and mass gap
differential forms
algebra: Lie
Type (model theory)
01 natural sciences
Computer Science::Digital Libraries
Gauge Field Theories
symbols.namesake
High Energy Physics::Theory
0103 physical sciences
Lie algebra
Gauge theory
010306 general physics
Mathematical Physics
Gauge symmetry
Mathematical physics
Physics
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
symmetry: gauge
mathematical methods
Mathematical Physics (math-ph)
space
Beyond the standard model
Bracket (mathematics)
High Energy Physics - Theory (hep-th)
gauge field theory: Yang-Mills
Gauge Symmetry
symbols
Higgs mechanism
Leibniz
Zdroj: Phys.Rev.D
Phys.Rev.D, 2019, 99 (11), pp.115026. ⟨10.1103/PhysRevD.99.115026⟩
Physical Review
Physical Review D
Physical Review D, American Physical Society, 2019, 99 (11), pp.115026. ⟨10.1103/PhysRevD.99.115026⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.99.115026⟩
Popis: A quadratic Leibniz algebra $(\mathbb{V},[ \cdot, \cdot ],\kappa)$ gives rise to a canonical Yang-Mills type functional $S$ over every space-time manifold. The gauge fields consist of 1-forms $A$ taking values in $\mathbb{V}$ and 2-forms $B$ with values in the subspace $\mathbb{W} \subset \mathbb{V}$ generated by the symmetric part of the bracket. If the Leibniz bracket is anti-symmetric, the quadratic Leibniz algebra reduces to a quadratic Lie algebra, $B\equiv 0$, and $S$ becomes identical to the usual Yang-Mills action functional. We describe this gauge theory for a general quadratic Leibniz algebra. We then prove its (classical and quantum) equivalence to a Yang-Mills theory for the Lie algebra ${\mathfrak{g}} = \mathbb{V}/\mathbb{W}$ to which one couples massive 2-form fields living in a ${\mathfrak{g}}$-representation. Since in the original formulation the B-fields have their own gauge symmetry, this equivalence can be used as an elegant mass-generating mechanism for 2-form gauge fields, thus providing a 'higher Higgs mechanism' for those fields.
Comment: 6 pages; a subsection with remarks on finite gauge transformations added. Version to be published in Phys. Rev. D
Databáze: OpenAIRE