ACQUISITION AND MODELING OF A SPECTRUM IN A NON THERMAL EQUILIBRIUM PLASMA FORMED IN AIR WITH WATER
Autor: | Yu. N. Barinov, Pascal André, V. B. Kaplan, Géraldine Faure, Sergey M. Shkol'nik |
---|---|
Přispěvatelé: | Laboratoire arc électrique et plasmas thermiques (LAEPT), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS), A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences [Moscow] (RAS), Amouroux and Fauchais, André, Pascal, Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP) |
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: |
Thermal equilibrium
Range (particle radiation) DNMLE Atmospheric pressure Chemistry AIR General Medicine Plasma Spectral line 52.50 [PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] [PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] Electrode NON THERMAL EQUILIBRIUM PLASMA WATER Atomic physics Quantum Vibrational temperature |
Zdroj: | High Temperature Material Processes TPP9 TPP9, 2006, France. pp.Vol 10; Issue 2; 239-252 |
Popis: | Spectra in the range of 365-385 nm, corresponding to the Schumann-Runge system of O2 (B33u - X33-g) and to the second positive system of N2 (C30u - B30g) are measured by optical emission spectroscopy in a discharge with liquid non-metallic electrodes (DLNME) in air with water at atmospheric pressure. They are simulated theoretically. This discharge generates a non-equilibrium plasma. In this paper, we first describe the experimental set up. Then, we explain the method of spectra simulation. By comparison of measured and simulated spectra, we determine the rotational and vibrational temperature and the ratio between densities of two upper electronic quantum levels of the two considered systems. The possible mechanism of spectra formation is discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |