Dynamic Evaluation of low-temperature metal-supported solid oxide fuel cell oriented to Auxilliary Power Units

Autor: Sing Yick, Dave Ghosh, Radenka Maric, Jörg Oberste Berghaus, Zhenwei Wang, Rob Hui, Wei Qu, Cyrille Decès-Petit
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Popis: A metal-supported solid oxide fuel cell (SOFC) composed of a Ni–Ce0.8Sm0.2O2−δ (Ni–SDC) cermet anode and an SDC electrolyte was fabricated by suspension plasma spraying on a Hastelloy X substrate. The cathode, an Sm0.5Sr0.5CoO3 (SSCo)–SDC composite, was screen-printed and fired in situ. The dynamic behaviour of the cell was measured while subjected to complete fuel shutoff and rapid start-up cycles, as typically encountered in auxiliary power units (APU) applications. A promising performance – with a maximum power density (MPD) of 0.176 W cm−2 at 600 °C – was achieved using humidified hydrogen as fuel and air as the oxidant. The cell also showed excellent resistance to oxidation at 600 °C during fuel shutoff, with only a slight drop in performance after reintroduction of the fuel. The Cr and Mn species in the Hastelloy X alloy appeared to be preferentially oxidized while the oxidation of nickel in the metallic substrate was temporarily alleviated. In rapid start-up cycles with a heating rate of 60 °C min−1, noticeable performance deterioration took place in the first two thermal cycles, and then continued at a much slower rate in subsequent cycles. A postmortem analysis of the cell suggested that the degradation was mainly due to the mismatch of the thermal expansion coefficient across the cathode/electrolyte interface.
Databáze: OpenAIRE