Evidence for the transfer of methadone and EDDP by sweat to children’s hair

Autor: Hilke Andresen-Streichert, Axel Klee, Tobias Kieliba, Justus Beike, Markus A. Rothschild, Katharina Feld, Patrick Dahm
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Legal Medicine
Int J Legal Med
ISSN: 1437-1596
0937-9827
Popis: In cases where there is a question as to whether children have come into contact with drugs, examinations of their scalp hair are frequently carried out. Positive test results are often discussed in the forensic community due to the various possible modes via which drugs and their metabolites can be incorporated into the hair. These include drug uptake by the child (e.g. oral ingestion or inhalation), but also contamination of hair via contact with the sweat from drug users. In this study, the possibility of methadone and its metabolite EDDP being incorporated into children’s hair by contact with sweat from persons undergoing opiate maintenance therapy (methadone) was examined. The transfer of methadone and EDDP via sweat from methadone patients (n = 15) to children’s hair was simulated by close skin contact of drug-free children’s hair, encased in mesh-pouches, for 5 days. Sweat-collecting patches (hereafter referred to as ‘sweat patches’) were applied to the test persons’ skin. One strand of hair and one sweat patch were collected daily from each patient. Analyses were performed using GC–MS/MS (hair) and LC–MS/MS (serum, sweat patches). After 4 days of skin contact, methadone was detectable in the formerly drug-free hair strands in all 15 study participants. EDDP was detectable in 34 of 75 hair strands, with the maximum number of positive results (11 EDDP-positive hair strands) being detected after 5 days. These results show that transfer of methadone and EDDP to drug-free hair is possible through close skin contact with individuals taking part in methadone substitution programmes. A correlation between serum concentration, sweat concentration and substance concentration in hair strands could not be demonstrated, but a tendency towards higher concentrations due to longer contact time is clearly evident.
Databáze: OpenAIRE