On Ternary Diophantine Equations Of Signature (P, P, 2) Over Number Fields
Autor: | Ekin Ozman, Yasemin Kara, Erman Işik |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Volume: 44, Issue: 4 1197-1211 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | Let $K$ be a totally real number field with narrow class number one and $O_K$ be its ring of integers. We prove that there is a constant $B_K$ depending only on $K$ such that for any prime exponent $p>B_K$ the Fermat type equation $x^p+y^p=z^2$ with $x,y,z\in O_K$ does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons. |
Databáze: | OpenAIRE |
Externí odkaz: |