Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis

Autor: Philippe Leboulch, Masayuki Yamamoto, Osamu Ohneda, Ritsuko Shimizu, Leila Maouche-Chretien, Sylvie Gisselbrecht, Zahra Kadri, Paul-Henri Romeo, Stany Chrétien
Přispěvatelé: Institut des Maladies Emergentes et des Thérapies Innovantes (IMETI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA) - Université Paris-Saclay, Thérapie génique et contrôle de l'expansion cellulaire (UMR E007), Université Paris-Saclay - Commissariat à l'énergie atomique et aux énergies alternatives (CEA) - Université Paris-Sud - Paris 11 (UP11), Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5) - Institut National de la Santé et de la Recherche Médicale (INSERM) - Centre National de la Recherche Scientifique (CNRS), Department of Molecular and Developmental Biology, University of Tsukuba, Genetics Division, Brigham and Women's Hospital [Boston], This work was supported by ARC and INSERM (SG, P-HR, LM-C, SC), National Institutes of Health grant to PL, the Fondation LeJeune and the Fondation de France (ZK), a Contrat d'Interface International from INSERM (SC), and ERATO-JST and MEXT (RS, OO, MY)., Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Tsukuba = University of Tsukuba, Autard, Delphine
Jazyk: angličtina
Rok vydání: 2009
Předmět:
MESH : Molecular Sequence Data
Cell division
MESH : Transcription Factors
Cellular differentiation
MESH : NIH 3T3 Cells
Amino Acid Motifs
Cell Biology/Cell Growth and Division
MESH: Amino Acid Sequence
Biochemistry
Retinoblastoma Protein
MESH: Amino Acid Motifs
Mice
0302 clinical medicine
E2F2 Transcription Factor
MESH: E2F2 Transcription Factor
MESH : Cell Proliferation
MESH: Animals
Erythropoiesis
GATA1 Transcription Factor
Biology (General)
Nuclear protein
MESH: GATA1 Transcription Factor
0303 health sciences
biology
General Neuroscience
MESH : Amino Acid Sequence
Retinoblastoma protein
Nuclear Proteins
MESH : Protein Binding
MESH: Transcription Factors
MESH : Cell Division
MESH : E2F2 Transcription Factor
3. Good health
Cell biology
030220 oncology & carcinogenesis
MESH: Cell Division
Cell Biology/Nuclear Structure and Function
biological phenomena
cell phenomena
and immunity

General Agricultural and Biological Sciences
Cell Division
Research Article
Protein Binding
MESH : Amino Acid Motifs
QH301-705.5
Cell Biology/Developmental Molecular Mechanisms
Molecular Sequence Data
General Biochemistry
Genetics and Molecular Biology

03 medical and health sciences
Erythroid Cells
MESH : Erythropoiesis
MESH: Cell Proliferation
MESH : Mice
[SDV.BBM] Life Sciences [q-bio]/Biochemistry
Molecular Biology

MESH: Protein Binding
Animals
Humans
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Amino Acid Sequence
E2F
MESH: Mice
Molecular Biology
Transcription factor
MESH : Erythroid Cells
Cell Proliferation
030304 developmental biology
MESH: Molecular Sequence Data
MESH: Humans
General Immunology and Microbiology
Cell growth
MESH: Erythropoiesis
MESH : Humans
MESH : Nuclear Proteins
MESH: Retinoblastoma Protein
MESH: Erythroid Cells
Molecular biology
MESH : GATA1 Transcription Factor
NIH 3T3 Cells
biology.protein
MESH : Animals
MESH: Nuclear Proteins
MESH : Retinoblastoma Protein
MESH: NIH 3T3 Cells
Transcription Factors
Zdroj: PLoS Biology
PLoS Biology, Public Library of Science, 2009, 7 (6), pp.e1000123. 〈10.1371/journal.pbio.1000123〉
PLoS Biology, Vol 7, Iss 6, p e1000123 (2009)
PLoS Biology, Public Library of Science, 2009, 7 (6), pp.e1000123. ⟨10.1371/journal.pbio.1000123⟩
PLoS Biology, 2009, 7 (6), pp.e1000123. ⟨10.1371/journal.pbio.1000123⟩
ISSN: 1544-9173
1545-7885
DOI: 10.1371/journal.pbio.1000123〉
Popis: Cell differentiation is often coupled with cell cycle arrest. Here, we show that direct binding of the erythroid transcription factor GATA-1 to the retinoblastoma protein and the pRb/E2F transcription factor complex is critical for red blood cell formation.
How cell proliferation subsides as cells terminally differentiate remains largely enigmatic, although this phenomenon is central to the existence of multicellular organisms. Here, we show that GATA-1, the master transcription factor of erythropoiesis, forms a tricomplex with the retinoblastoma protein (pRb) and E2F-2. This interaction requires a LXCXE motif that is evolutionary conserved among GATA-1 orthologs yet absent from the other GATA family members. GATA-1/pRb/E2F-2 complex formation stalls cell proliferation and steers erythroid precursors towards terminal differentiation. This process can be disrupted in vitro by FOG-1, which displaces pRb/E2F-2 from GATA-1. A GATA-1 mutant unable to bind pRb fails to inhibit cell proliferation and results in mouse embryonic lethality by anemia. These findings clarify the previously suspected cell-autonomous role of pRb during erythropoiesis and may provide a unifying molecular mechanism for several mouse phenotypes and human diseases associated with GATA-1 mutations.
Author Summary Red blood cell production, or erythropoiesis, proceeds by a tight coupling of proliferation and differentiation. The earliest erythroid progenitor identifiable possesses remnant stem cell characteristics as it both self-renews and differentiates. Each progenitor gives rise to more than 10,000 cells, including secondary progenitors. Yet, during the next stage of differentiation, much of this renewal capability is lost, and terminal erythroid differentiation progresses in a stepwise manner through several stages separated by a single mitosis. The transcription factor GATA-1 is essential for erythroid differentiation because it induces the expression of all the known erythroid-specific genes. Here, we show that GATA-1 directly interacts with proteins that are central to the process of cell division: the retinoblastoma protein pRb and the transcription factor E2F. Specifically, E2F becomes inactivate after engaging in a GATA-1/pRb/E2F tricomplex. Another erythroid transcription factor, termed FOG-1, is able to displace pRb/E2F from this complex in vitro upon binding to GATA-1. We hypothesize that the liberated pRb/E2F can then be the target of subsequent regulation to ultimately release free E2F, which triggers cell division. The physiological role of this new pathway is evidenced by transgenic mouse experiments with GATA-1 mutants unable to bind pRb/E2F, which result in embryonic lethality by anemia.
Databáze: OpenAIRE