Coboundary categories and local rules
Autor: | Bruce W. Westbury |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
05E10 18D10 Group (mathematics) Applied Mathematics Theoretical Computer Science Combinatorics Computational Theory and Mathematics Action (philosophy) FOS: Mathematics Discrete Mathematics and Combinatorics Mathematics - Combinatorics Geometry and Topology Combinatorics (math.CO) Representation Theory (math.RT) Mathematics::Representation Theory Quantum Mathematics - Representation Theory Mathematics |
DOI: | 10.48550/arxiv.1705.07141 |
Popis: | First we develop the theory of local rules for coboundary categories. Then we describe the local rules in two main cases. First for the quantum groups in general and in the seminormal representations of the Hecke algebras. Then for crystals in general and specifically for crystals of minuscule representations. Finally we show how growth diagrams can be extended to construct the action of the cactus group on highest weight words. |
Databáze: | OpenAIRE |
Externí odkaz: |