An Analytical Framework for the IEEE 802.15.4 MAC Layer Protocol Under Periodic Traffic
Autor: | Haojiang Zhao, Ruisong Han, Yipeng Wang, Wei Yang, Linsen Xu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
IEEE 802.15.4
analytical framework Computer science Distributed computing Throughput 02 engineering and technology lcsh:Chemical technology Biochemistry Article Analytical Chemistry energy consumption 0202 electrical engineering electronic engineering information engineering lcsh:TP1-1185 Electrical and Electronic Engineering Instrumentation IEEE 802.15 Network packet Node (networking) 020208 electrical & electronic engineering ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS 020206 networking & telecommunications Energy consumption Atomic and Molecular Physics and Optics Airfield traffic pattern CSMA/CA periodic traffic network throughput Scalability Wireless sensor network Carrier sense multiple access with collision avoidance Communication channel |
Zdroj: | Sensors Volume 20 Issue 12 Sensors (Basel, Switzerland) Sensors, Vol 20, Iss 3350, p 3350 (2020) |
ISSN: | 1424-8220 |
DOI: | 10.3390/s20123350 |
Popis: | As the reference communication standard of wireless sensor networks (WSNs), the IEEE 802.15.4 standard has been adopted in various WSN-based applications. In many of these applications, one of the most common traffic pattern types is a periodic traffic patterns, however, the majority of existing analytical models target either saturated or unsaturated network traffic patterns. Furthermore, few of them can be directly extended to the periodic traffic scenario, since periodic traffic brings unstable load status to sensor nodes. To better characterize the WSNs with periodic traffic, we propose an accurate and scalable analytical framework for the IEEE 802.15.4 MAC protocol. By formulating the relationship between clear channel assessment (CCA) and its successful probability from the perspective of channel state and node state, single node&rsquo s behavior and whole network&rsquo s performance under different network scales and traffic loads can be derived. Extensive simulations are conducted to validate the proposed framework in terms of both local statistics and overall statistics, and the results show that the model can represent the actual behavior and the real performance of both single node and whole network. Besides, as the simplified version of double CCAs mode (DS mode), single CCA mode (SS mode), is also analyzed with simple modifications on the proposed analytical framework. Combining the analytical framework with simulation results, the applicable network scenarios of two modes are also demonstrated respectively. Finally, an approximate distribution of one data packet&rsquo s backoff duration is proposed. With this approximate distribution, a conservative estimation of data packet&rsquo s average transmission latency in networks with given configurations can be easily carried out. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |