Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region

Autor: Antoine Chanuel, Benoit Charlot, Laurent Cerutti, Thierry Taliercio, F. Barho, M. Bomers, F. Gonzalez-Posada, A. Mezy
Přispěvatelé: Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Matériaux, MicroCapteurs et Acoustique (M2A), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), sikemia
Rok vydání: 2020
Předmět:
Zdroj: Reaction Chemistry & Engineering
Reaction Chemistry & Engineering, Royal Society of Chemistry, 2019, ⟨10.1039/C9RE00350A⟩
ISSN: 2058-9883
DOI: 10.1039/c9re00350a
Popis: The combination of semiconductor plasmonics with microfluidics allows surface-enhanced infrared spectroscopy of molecules in the flow regime. Exploiting semiconductor plasmonics enables surface-enhanced mid-IR spectroscopy from 4 μm to 20 μm and accesses the so-called molecular fingerprint region from 6.7 μm to 20 μm (1500–500 cm−1). Besides addressing the whole fingerprint region and allowing the identification of molecules by database comparison, the III–V semiconductor material class allows potentially an integration of semiconductor-based IR-sources, IR-detectors and IR-resonators on-chip. Miniaturized plasmonic enhanced microfluidic mid-IR spectrometry has great potential to analyse and identify minute amounts of molecules in the flow regime. This work describes technological processing to combine semiconductor plasmonics and microfluidics. Two proof-of-concept prototypes were experimentally realized and subsequently tested. Measured mid-IR spectra allow to clearly distinguish ethanol and water by their respective IR-absorption characteristics when inserted into the microfluidic flow chamber. Additionally, a semiconductor surface plasmon resonance shift can be observed according to the inserted solvent. Finally, the formation of a self-assembled monolayer under flow conditions is demonstrated by an observable mid-IR surface plasmon resonance shift of 6 ± 1 cm−1 (140 ± 23 nm).
Databáze: OpenAIRE