Fork Tensor Product States - Efficient Three Orbital Real Time DMFT Solver
Autor: | Manuel Zingl, Hans Gerd Evertz, Daniel Bauernfeind, Robert Triebl, Markus Aichhorn |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Physics
Strongly Correlated Electrons (cond-mat.str-el) QC1-999 FOS: Physical sciences General Physics and Astronomy High resolution Solver 01 natural sciences Fork (software development) 010305 fluids & plasmas Condensed Matter - Strongly Correlated Electrons Tensor product 0103 physical sciences Statistical physics 010306 general physics |
Zdroj: | Physical Review X, Vol 7, Iss 3, p 031013 (2017) |
Popis: | We present a tensor network especially suited for multi-orbital Anderson impurity models and as an impurity solver for multi-orbital dynamical mean-field theory (DMFT). The solver works directly on the real-frequency axis and yields very high spectral resolution at all frequencies. We use a large number $\left(\mathcal{O}(100)\right)$ of bath sites, and therefore achieve an accurate representation of the bath. The solver can treat full rotationally invariant interactions with reasonable numerical effort. We show the efficiency and accuracy of the method by a benchmark for the testbed material SrVO$_3$. There we observe multiplet structures in the high-energy spectrum which are almost impossible to resolve by other multi-orbital methods. The resulting structure of the Hubbard bands can be described as a broadened atomic spectrum with rescaled interaction parameters. Additional features emerge when $U$ is increased. The impurity solver offers a new route to the calculation of precise real-frequency spectral functions of correlated materials. 12 pages, 11 figures, Physical Review X, accepted version |
Databáze: | OpenAIRE |
Externí odkaz: |