Popis: |
The chemical dynamics to form cyanopropyne, CH3CCCN (X 1A1), and cyanoallene, H2CCCHCN (X 1A′), via the neutral–neutral reaction of the cyano radical, CN (X 2Σ+), with methylacetylene, CH3CCH (X 1A1), is investigated under single collision conditions in a crossed molecular beam experiment at a collision energy of 24.7 kJ mol−1. The laboratory angular distribution and time-of-flight spectra of the C4H3N products are recorded at m/e=65, 64, 63, and 62. The reaction of d3-methylacetylene, CD3CCH (X 1A1), with CN radicals yields reactive scattering signal at m/e=68 and m/e=67 demonstrating that two distinct H(D) atom loss channels are open. Forward-convolution fitting of the laboratory data reveal that the reaction dynamics are indirect and governed by an initial attack of the CN radical to the π electron density of the β carbon atom of the methylacetylene molecule to form a long lived CH3CCHCN collision complex. The latter decomposes via two channels, i.e., H atom loss from the CH3 group to yield cyanoallene... |