Superlinear deterministic top-down tree transducers
Autor: | G. Dányi, Zoltán Fülöp |
---|---|
Rok vydání: | 1996 |
Předmět: |
Discrete mathematics
Class (set theory) Hierarchy (mathematics) General Mathematics Exponential tree Composition (combinatorics) Theoretical Computer Science Combinatorics Tree (descriptive set theory) Computational Theory and Mathematics Closure (mathematics) Theory of computation Homomorphism Mathematics |
Zdroj: | Mathematical Systems Theory. 29:507-534 |
ISSN: | 1433-0490 0025-5661 |
DOI: | 10.1007/bf01184813 |
Popis: | Denote byDT, l-DT, andnd-HOM the class of tree transformations induced by deterministic top-down tree transducers, linear deterministic top-down tree transducers, and nondeleting homomorphism tree transducers, respectively. In this paper the classsl-DT of tree transformations induced by superlinear deterministic top-down tree transducers is considered. Some basic properties ofsl-DT are shown. Among others, it is proved thatsl-DT is not closed under composition; thatl-DT—sl-DT + ≠ O withsl-DT + being the closure ofsl-DT under composition; and thatDT = nd-HOM o sl-DT, where o denotes the operation composition of two classes. Then the hierarchy {sl-DT n n> 1} is shown to be proper, meaning thatsl-DT n ⊂sl-DT n+1, forn≥ 1. Moreover, the same is proved for the hierarchy {t-sl-DT n n ≥ 1}, wheret-sl-DT is the subclass ofsl-DT induced by total deterministic superlinear top-down tree transducers. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |