Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes
Autor: | Numa Couniot, Denis Flandre, Laurent Francis, Olivier Poncelet, Thomas Vanzieleghem, Jacques Mahillon, Jonathan Rasson, N. Van Overstraeten-Schlogel |
---|---|
Přispěvatelé: | UCL - SST/ICTM/ELEN - Pôle en ingénierie électrique, UCL - SST/ELI/ELIM - Applied Microbiology |
Rok vydání: | 2015 |
Předmět: |
Materials science
Surface Properties Microfluidics Interdigitated microelectrodes Biomedical Engineering Biophysics Impedance spectroscopy Nanotechnology Biosensing Techniques Urinalysis Background noise Lab-On-A-Chip Devices Real-time capacitive biosensor Whole-cell bacteria Aluminum Oxide Staphylococcus epidermidis Urinary infecctions Electrochemistry Miniaturization Lytic enzymes Detection limit Staining and Labeling Equipment Design General Medicine Electroplating Bacterial Load Dielectric spectroscopy Equipment Failure Analysis Microelectrode Dielectric Spectroscopy Selectivity Microelectrodes Sensitivity (electronics) Biotechnology |
Zdroj: | Biosensors and Bioelectronics, Vol. 67, p. 154-161 (7 août 2014) |
ISSN: | 0956-5663 |
DOI: | 10.1016/j.bios.2014.07.084 |
Popis: | Point-of-care (PoC) diagnostics for bacterial detection offer tremendous prospects for public health care improvement. However, such tools require the complex combination of the following performances: rapidity, selectivity, sensitivity, miniaturization and affordability. To meet these specifications, this paper presents a new selectivity method involving lysostaphin together with a CMOS-compatible impedance sensor for genus-specific bacterial detection. The method enables the sample matrix to be directly flown on the polydopamine-covered sensor surface without any pre-treatment, and considerably reduces the background noise. Experimental proof-of-concept, explored by simulations and confirmed through a setup combining simultaneous optical and electrical real-time monitoring, illustrates the selective and capacitive detection of Staphylococcus epidermidis in synthetic urine also containing Enterococcus faecium. While providing capabilities for miniaturization and system integration thanks to CMOS compatibility, the sensors show a detection limit of ca. 10(8) (CFU/mL).min in a 1.5 μL microfluidic chamber with an additional setup time of 50 min. The potentials, advantages and limitations of the method are also discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |