A universal coefficient theorem for Gauss's lemma

Autor: Victor Reiner, William Messing
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: J. Commut. Algebra 5, no. 2 (2013), 299-307
Popis: We prove a version of Gauss's Lemma. It recursively constructs polynomials {c_k} for k=0,1,...,m+n, in Z[a_i,A_i,b_j,B_j] for i=0,...,m, and j=0,1,...,n, having degree at most (m+n choose m) in each of the four variable sets, such that whenever {A_i},{B_j},{C_k} are the coefficients of polynomials A(X),B(X),C(X) with C(X)=A(X)B(X) and 1 = a_0 A_0 +...+ a_m A_m = b_0 B_0 +...+ b_n B_n, then one also has 1 = c_0 C_0 +...+ c_{m+n} C_{m+n}.
Comment: Minor edits; version to appear in J. Commutative Algebra
Databáze: OpenAIRE