Differential Expression of Circulating Plasma miRNA-370 and miRNA-10a from Patients with Hereditary Hemorrhagic Telangiectasia

Autor: Lidia Ruiz-Llorente, Carmelo Bernabeu, Virginia Albiñana, Luisa María Botella
Přispěvatelé: Ministerio de Economía y Competitividad (España), Centro de Investigación Biomédica en Red Enfermedades Raras (España), Consejo Superior de Investigaciones Científicas (España), Instituto de Salud Carlos III, European Commission
Rok vydání: 2020
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Journal of Clinical Medicine
Journal of Clinical Medicine, Vol 9, Iss 2855, p 2855 (2020)
Volume 9
Issue 9
ISSN: 2077-0383
DOI: 10.3390/jcm9092855
Popis: © 2020 by the authors.
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant, vascular disorder that presents with telangiectases and arteriovenous malformations. HHT is a genetically heterogeneous disorder, involving mutations in endoglin (ENG; HHT1) and activin receptor-like kinase 1 (ACVRL1/ALK1; HHT2) genes that account for over 85% of all HHT patients. The current diagnosis of HHT patients remains at the clinical level, but many suspected patients do not have a clear HHT diagnosis or do not show pathogenic mutations in HHT genes. This situation has prompted the search for biomarkers to help in the early diagnosis of the disease. We have analyzed the plasma levels in HHT patients of selected micro-RNAs (miRNAs), small single-stranded RNAs that regulate gene expression at the transcriptional level by interacting with specific RNA targets. A total of 16 HHT1 and 17 HHT2 plasma samples from clinically confirmed patients and 16 controls were analyzed in this study. Total RNA was purified from plasma, and three selected miRNAs (miRNA-10a, miRNA-214, and miRNA-370), related to the pathobiology of cardiovascular diseases and potentially targeting ENG or ALK1, were measured by quantitative polymerase chain reaction. Compared with controls, levels of miRNA-370, whose putative target is ENG, were significantly downregulated in HHT1, but not in HHT2, whereas the levels of miRNA-10a, whose putative target is ALK1, were significantly upregulated in HHT2, but not in HHT1. In addition, the levels of miRNA-214, potentially targeting ENG and ALK1, did not change in either HHT1 or HHT2 patients versus control samples. While further studies are warranted, these results suggest that dysregulated plasma levels of miRNA-370 or miRNA-10a could help to identify undiagnosed HHT1 or HHT2 patients, respectively.
This research was funded by grants from Ministerio de Ciencia, Innovación y Universidades of Spain (SAF2013-43421-R to CB), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; ISCIII-CB06/07/0038 to CB), and Consejo Superior de Investigaciones Científicas (CSIC; 201920E022 to CB) CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain supported by European Regional Development (FEDER) funds.
Databáze: OpenAIRE