Perverse schobers and GKZ systems
Autor: | Špenko, Š., Van den Bergh, M. |
---|---|
Přispěvatelé: | Algebra and Analysis, Mathematics, Algebra |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
High Energy Physics - Theory
Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry High Energy Physics - Theory (hep-th) General Mathematics FOS: Mathematics FOS: Physical sciences Representation Theory (math.RT) Mathematics::Representation Theory Algebraic Geometry (math.AG) Mathematics - Representation Theory |
Zdroj: | Advances in Mathematics |
Popis: | Perverse schobers are categorifications of perverse sheaves. In prior work we constructed a perverse schober on a partial compactification of the stringy K\"ahler moduli space (SKMS) associated by Halpern-Leistner and Sam to a quasi-symmetric representation of a reductive group. When the group is a torus the SKMS corresponds to the complement of the GKZ discriminant locus (which is a hyperplane arrangement in the quasi-symmetric case shown by Kite). We show here that a suitable variation of the perverse schober we constructed provides a categorification of the associated GKZ hypergeometric system in the case of non-resonant parameters. As an intermediate result we give a description of the monodromy of such "quasi-symmetric" GKZ hypergeometric systems. Comment: 46 pages. v2: expanded Discussion |
Databáze: | OpenAIRE |
Externí odkaz: |