Perverse schobers and GKZ systems

Autor: Špenko, Š., Van den Bergh, M.
Přispěvatelé: Algebra and Analysis, Mathematics, Algebra
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advances in Mathematics
Popis: Perverse schobers are categorifications of perverse sheaves. In prior work we constructed a perverse schober on a partial compactification of the stringy K\"ahler moduli space (SKMS) associated by Halpern-Leistner and Sam to a quasi-symmetric representation of a reductive group. When the group is a torus the SKMS corresponds to the complement of the GKZ discriminant locus (which is a hyperplane arrangement in the quasi-symmetric case shown by Kite). We show here that a suitable variation of the perverse schober we constructed provides a categorification of the associated GKZ hypergeometric system in the case of non-resonant parameters. As an intermediate result we give a description of the monodromy of such "quasi-symmetric" GKZ hypergeometric systems.
Comment: 46 pages. v2: expanded Discussion
Databáze: OpenAIRE