Homogenization and hypocoercivity for Fokker–Planck equations driven by weakly compressible shear flows
Autor: | Grigorios A. Pavliotis, Michele Coti Zelati |
---|---|
Rok vydání: | 2020 |
Předmět: |
Spatial variable
DISSIPATION ENHANCEMENT 0199 Other Mathematical Sciences Mathematics Applied homogenization hypocoercivity math.PR 01 natural sciences Homogenization (chemistry) 010305 fluids & plasmas PERIODIC HOMOGENIZATION Stochastic differential equation Mathematics - Analysis of PDEs 0102 Applied Mathematics shear flows 0103 physical sciences FOS: Mathematics 0101 mathematics math.AP Physics enhanced diffusion Science & Technology TIME-SCALES 0103 Numerical and Computational Mathematics Applied Mathematics Probability (math.PR) 010102 general mathematics Mathematical analysis Fokker-Planck equation Fluid mechanics 35B27 35K15 60J60 76F25 DIFFUSION TRANSPORT Physical Sciences Compressibility Fokker–Planck equation Invariant measure Shear flow Mathematics - Probability Mathematics Analysis of PDEs (math.AP) |
Zdroj: | IMA Journal of Applied Mathematics. 85:951-979 |
ISSN: | 1464-3634 0272-4960 |
DOI: | 10.1093/imamat/hxaa035 |
Popis: | We study the long-time dynamics of two-dimensional linear Fokker-Planck equations driven by a drift that can be decomposed in the sum of a large shear component and the gradient of a regular potential depending on one spatial variable. The problem can be interpreted as that of a passive scalar advected by a slightly compressible shear flow, and undergoing small diffusion. For the corresponding stochastic differential equation, we give explicit homogenization rates in terms of a family of time-scales depending on the parameter measuring the strength of the incompressible perturbation. This is achieved by exploiting an auxiliary Poisson problem, and by computing the related effective diffusion coefficients. Regarding the long-time behaviour of the solution of the Fokker-Planck equation, we provide explicit decay rates to the unique invariant measure by employing a quantitative version of the classical hypocoercivity scheme. From a fluid mechanics perspective, this turns out to be equivalent to quantifying the phenomenon of enhanced diffusion for slightly compressible shear flows. Comment: 22 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |