Algebraic Anosov actions of nilpotent Lie groups
Autor: | Carlos Maquera, Thierry Barbot |
---|---|
Přispěvatelé: | Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo = University of São Paulo (USP) |
Rok vydání: | 2013 |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics::Dynamical Systems [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Cartan subalgebra Lie group Context (language use) Dynamical Systems (math.DS) Mathematics::Geometric Topology Representation theory [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] TOPOLOGIA DIFERENCIAL Algebraic cycle Nilpotent FOS: Mathematics Geometry and Topology Anosov diffeomorphism [MATH]Mathematics [math] Mathematics - Dynamical Systems Algebraic number Mathematics::Representation Theory ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP Topology and its Applications Topology and its Applications, 2013, 160 (1), pp.199-219. ⟨10.1016/j.topol.2012.10.012⟩ |
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2012.10.012 |
Popis: | In this paper we classify algebraic Anosov actions of nilpotent Lie groups on closed manifolds, extending the previous results by P. Tomter. We show that they are all nil-suspensions over either suspensions of Anosov actions of Z^k on nilmanifolds, or (modified) Weyl chamber actions. We check the validity of the generalized Verjovsky conjecture in this algebraic context. We also point out an intimate relation between algebraic Anosov actions and Cartan subalgebras in general real Lie groups. 40 pages |
Databáze: | OpenAIRE |
Externí odkaz: |