Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them
Autor: | Dimitrios Evangelopoulos, Simon J. Waddell, Joana Diniz da Fonseca |
---|---|
Rok vydání: | 2014 |
Předmět: |
Microbiology (medical)
Drug persistence models Tuberculosis media_common.quotation_subject Antitubercular Agents Disease Models Biological lcsh:Infectious and parasitic diseases drug discovery Mycobacterium tuberculosis Efficacy 03 medical and health sciences Pharmacotherapy Global health medicine Animals Humans lcsh:RC109-216 subpopulations 030304 developmental biology media_common 0303 health sciences QR0075 biology 030306 microbiology Drug discovery phenotypic drug tolerance General Medicine biology.organism_classification medicine.disease 3. Good health QR Infectious Diseases Immunology |
Zdroj: | International Journal of Infectious Diseases, Vol 32, Iss C, Pp 76-80 (2015) |
ISSN: | 1878-3511 1201-9712 |
Popis: | Tuberculosis still remains a global health emergency, claiming 1.5 million lives in 2013. The bacterium responsible for this disease, Mycobacterium tuberculosis (M.tb), has successfully survived within hostile host environments, adapting to immune defence mechanisms, for centuries. This has resulted in a disease that is challenging to treat, requiring lengthy chemotherapy with multi-drug regimens. One explanation for this difficulty in eliminating M.tb bacilli in vivo is the disparate action of antimicrobials on heterogeneous populations of M.tb, where mycobacterial physiological state may influence drug efficacy. In order to develop improved drug combinations that effectively target diverse mycobacterial phenotypes, it is important to understand how such subpopulations of M.tb are formed during human infection. We review here the in vitro and in vivo systems used to model M.tb subpopulations that may persist during drug therapy, and offer aspirations for future research in this field. |
Databáze: | OpenAIRE |
Externí odkaz: |