About the trimmed and the Poincaré-Dulac normal form of diffeomorphisms

Autor: Cresson, J., Jasmin Raissy
Přispěvatelé: Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di matematica 'L. Tonelli' . (PISA-TONELLI), University of Pisa - Università di Pisa
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Bollettino dell'Unione Matematica Italiana
Bollettino dell'Unione Matematica Italiana, Springer Verlag, 2011, 27.p
Scopus-Elsevier
ISSN: 1972-6724
2198-2759
Popis: We study two particular continuous prenormal forms as defined by Jean Ecalle and Bruno Vallet for local analytic diffeomorphism: the Trimmed form and the Poincare-Dulac normal form. We first give a self-contain introduction to the mould formalism of Jean Ecalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We then give full proofs and details for results announced by J. Ecalle and B. Vallet about the Trimmed form of diffeomorphisms. We then discuss a mould approach to the classical Poincare-Dulac normal form of diffeomorphisms. We discuss the universal character of moulds taking place in normalization problems.
Comment: 27 pages
Databáze: OpenAIRE