About the trimmed and the Poincaré-Dulac normal form of diffeomorphisms
Autor: | Cresson, J., Jasmin Raissy |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di matematica 'L. Tonelli' . (PISA-TONELLI), University of Pisa - Università di Pisa |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
diffeomorphisms
Mathematics::Dynamical Systems [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] education mould calculus 37G05-37G10 Dynamical Systems (math.DS) musculoskeletal system ComputingMethodologies_ARTIFICIALINTELLIGENCE Computer Science::Emerging Technologies surgical procedures operative TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS normal forms FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Mathematics - Dynamical Systems human activities continuous prenormal forms ComputingMilieux_MISCELLANEOUS health care economics and organizations |
Zdroj: | Bollettino dell'Unione Matematica Italiana Bollettino dell'Unione Matematica Italiana, Springer Verlag, 2011, 27.p Scopus-Elsevier |
ISSN: | 1972-6724 2198-2759 |
Popis: | We study two particular continuous prenormal forms as defined by Jean Ecalle and Bruno Vallet for local analytic diffeomorphism: the Trimmed form and the Poincare-Dulac normal form. We first give a self-contain introduction to the mould formalism of Jean Ecalle. We provide a dictionary between moulds and the classical Lie algebraic formalism using non-commutative formal power series. We then give full proofs and details for results announced by J. Ecalle and B. Vallet about the Trimmed form of diffeomorphisms. We then discuss a mould approach to the classical Poincare-Dulac normal form of diffeomorphisms. We discuss the universal character of moulds taking place in normalization problems. Comment: 27 pages |
Databáze: | OpenAIRE |
Externí odkaz: |