Traitement Adaptatif d'Interface pour le Couplage Aérothermique à l'aide d'un Méthode Galerkin Discontinue
Autor: | Marc Errera, Florent Renac, Matthew Nguyen, Rocco Moretti, Vincent Couaillier, Odile Labbé |
---|---|
Přispěvatelé: | DAAA, ONERA, Université Paris-Saclay [Châtillon], ONERA-Université Paris-Saclay, DAAA, ONERA, Université Paris Saclay [Meudon], DAAA, ONERA, Université Paris-Saclay (COmUE) [Châtillon], ONERA-Université Paris Saclay (COmUE), DAAA, ONERA, Université Paris Saclay (COmUE) [Meudon] |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Coupling
Polynomial 020209 energy General Engineering 02 engineering and technology Condensed Matter Physics METHODE NUMERIQUE 01 natural sciences Stability (probability) 010305 fluids & plasmas DISCONTINUOUS GALERKIN METHOD Discontinuous Galerkin method 0103 physical sciences Convergence (routing) 0202 electrical engineering electronic engineering information engineering [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] Order (group theory) Applied mathematics Relaxation (approximation) COUPLAGE AEROTHERMIQUE Coupling coefficient of resonators Mathematics GALERKIN DISCONTINU |
Zdroj: | International Journal of Thermal Sciences International Journal of Thermal Sciences, Elsevier, 2020, 149, pp.106208. ⟨10.1016/j.ijthermalsci.2019.106208⟩ |
ISSN: | 1290-0729 |
DOI: | 10.1016/j.ijthermalsci.2019.106208⟩ |
Popis: | International audience; This paper presents the application of a discontinuous Galerkin method to conjugate heat transfer problems using a Dirichlet-Robin interface treatment. The use of optimal coefficients derived from a Godunov-Ryabenkii stability analysis is adapted to the discontinuous Galerkin discretization. The stability and convergence of different coupling coefficients are explored for fluid-structure interactions of varying strength. The effects of increasing the order of the polynomial approximation are examined. It was found that for weak fluid-structure interactions, the optimal coefficients provide stable and quickly converged results. However, for moderate and strong interactions, relaxation coefficients that are larger than optimal must be used to stabilize the process. Because the coupling coefficient was adapted to the polynomial order of approximation, increasing the order of the polynomial was not found to destabilize conjugate heat transfer processes using adaptive coefficients.Finally, at the end of the paper, a validation vs empirical correlations is presented. |
Databáze: | OpenAIRE |
Externí odkaz: |