Directed -in vitro- evolution of Precambrian and extant Rubiscos
Autor: | Antonio Ballesteros, Javier Martin-Diaz, Marisa Rodriguez, Jose M. Sanchez-Ruiz, Miguel Alcalde, Spencer M. Whitney, Paloma Santos-Moriano, Eva Garcia-Ruiz, Bernardo J. Gómez-Fernández, Monica Garcia, Valeria A. Risso, Francisco J. Plou, Patricia Gomez de Santos |
---|---|
Přispěvatelé: | Repsol, Consejo Superior de Investigaciones Científicas (España), Australian Research Council |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Models
Molecular inorganic chemicals 0106 biological sciences 0301 basic medicine Protein Conformation Ribulose-Bisphosphate Carboxylase Mutant Sequence Homology lcsh:Medicine Context (language use) 01 natural sciences Article 03 medical and health sciences Genetic drift Phylogenetics Amino Acid Sequence lcsh:Science Phylogeny Rhodospirillum Multidisciplinary biology RuBisCO fungi lcsh:R food and beverages Carbon Dioxide Directed evolution Kinetics 030104 developmental biology Evolutionary biology biology.protein lcsh:Q Directed Molecular Evolution Systematic evolution of ligands by exponential enrichment 010606 plant biology & botany |
Zdroj: | Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) Digital.CSIC. Repositorio Institucional del CSIC instname Scientific Reports Digibug. Repositorio Institucional de la Universidad de Granada Repositorio Institucional de la Consejería de Sanidad de la Comunidad de Madrid Consejería de Sanidad de la Comunidad de Madrid |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-23869-3 |
Popis: | Rubisco is an ancient, catalytically conserved yet slow enzyme, which plays a central role in the biosphere’s carbon cycle. The design of Rubiscos to increase agricultural productivity has hitherto relied on the use of in vivo selection systems, precluding the exploration of biochemical traits that are not wired to cell survival. We present a directed -in vitro- evolution platform that extracts the enzyme from its biological context to provide a new avenue for Rubisco engineering. Precambrian and extant form II Rubiscos were subjected to an ensemble of directed evolution strategies aimed at improving thermostability. The most recent ancestor of proteobacteria -dating back 2.4 billion years- was uniquely tolerant to mutagenic loading. Adaptive evolution, focused evolution and genetic drift revealed a panel of thermostable mutants, some deviating from the characteristic trade-offs in CO2-fixing speed and specificity. Our findings provide a novel approach for identifying Rubisco variants with improved catalytic evolution potential. This work was supported by the REPSOL Research contracts Rubolution (RC020401120018), Rubolution 2.0 (RC 020401140042), the CSIC project PIE-201780E043 and the Australian Research Council grant CE140100015. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |